Search-Based Parallel Refactoring Using Population-Based Direct Approaches

نویسندگان

  • Hürevren Kiliç
  • Ekin Koc
  • Ibrahim Cereci
چکیده

Automated software refactoring is known to be one of the "hard" combinatorial optimization problems of the search-based software engineering field. The difficulty is mainly due to candidate solution representation, objective function description and necessity of functional behavior preservation of software. The problem is formulated as a combinatorial optimization problem whose objective function is characterized by an aggregate of object-oriented metrics or pareto-front solution description. In our recent empirical study, we have reported the results of a comparison among alternative search algorithms applied for the same problem: pure random, steepest descent, multiple first descent, simulated annealing, multiple steepest descent and artificial bee colony searches. The main goal of the study was to investigate potential of alternative multiple and population-based search techniques. The results showed that multiple steepest descent and artificial bee colony algorithms were most suitable two approaches for an efficient solution of the problem. An important observation was either with depth-oriented multiple steepest descent or breadth-oriented population-based artficial bee colony searches, better results could be obtained through higher number of executions supported by a lightweight solution representation. On the other hand different from multiple steepest descent search, population-based, scalable and being suitable for parallel execution characteristics of artificial bee colony search made the population-based choices to be the topic of this empirical study. I In this study, we report the search-based parallel refactoring results of an empirical comparative study among three population-based search techniques namely, artificial bee colony search, local beam search and stochastic beam search and a non-populated technique multiple steepest descent as the baseline. For our purpose, we used parallel features of our prototype automated refactoring tool A-CMA written in Java language. A-CMA accepts bytecode compiled Java codes as its input. It supports 20 different refactoring actions that realize searches on design landscape defined by an adhoc quality model being an aggregation of 24 object-oriented software metrics. We experimented 6 input programs written in Java where 5 of them being open source codes and one student project code. The empirical results showed that for almost all of the considered input programs with different run parameter settings, local beam search is the most suitable population-based search technique for the efficient solution of the search-based parallel refactoring problem in terms of mean and maximum normalized quality gain. However, we observed that the computational time requirement for local beam search becomes rather high when the beam size exceeds 60. On the other hand, even though it is not able to identify high quality designs for less populated search setups, time-efficiency and scalability properties of artificial bee colony search makes it a good choice for population sizes >= 200.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Software Refactoring Using Cooperative Parallel Evolutionary Algorithms

Code bad smells represent symptoms of poor implementation choices. Previous studies found that these smells make source code more difficult to maintain, possibly also increasing its fault-proneness. There are plethora of approaches that identify bad smells based on code analysis techniques. We propose, in this paper, to consider code-smells correction as a distributed problem. Different techniq...

متن کامل

A survey on search-based software design

Search-based approaches to software design are investigated. Software design is considered from a wide view, including topics that can also be categorized under software maintenance or re-engineering. Search-based approaches have been used in research from high architecture level design to software clustering and finally software refactoring. Enhancing and predicting software quality with searc...

متن کامل

AN EFFICIENT OPTIMIZATION PROCEDURE BASED ON CUCKOO SEARCH ALGORITHM FOR PRACTICAL DESIGN OF STEEL STRUCTURES

Different kinds of meta-heuristic algorithms have been recently utilized to overcome the complex nature of optimum design of structures. In this paper, an integrated optimization procedure with the objective of minimizing the self-weight of real size structures is simply performed interfacing SAP2000 and MATLAB® softwares in the form of parallel computing. The meta-heuristic algorithm chosen he...

متن کامل

Technical debt reduction using search based automated refactoring

Software refactoring has been recognised as a valuable process during software development and is often aimed at repaying technical debt. Technical debt arises when a software product has been built or amended without full care for structure and extensibility. Refactoring is useful to keep technical debt low and if it can be automated there are obvious efficiency benefits. Using a combination o...

متن کامل

Search-based refactoring: an empirical study

Object-oriented systems that undergo repeated addition of functionality commonly suffer a loss of quality in their underlying design. This problem must often be remedied in a costly refactoring phase before further maintenance programming can take place. Recently search-based approaches to automating the task of software refactoring, based on the concept of treating object-oriented design as a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011